Солнечная батарея – устройство солнечной батареи

Солнечные батареи

Солнечная батарея – или как оно работает?

Солнечная батарея – практически волшебное слово употребляемое в любой научной фантастике. Однако настоящая солнечная батарея – это далеко не обычная панель. В науке вообще нет понятия “солнечные батареи”, равно как и “солнечная батарея” – зато есть понятия ячеек, панелей и многого другого, о чем мы расскажем вам в этой статье.

В современном мире все уже пришли к пониманию того, что на нефти и газе долго цивилизация не проживет. Следовательно надо переходить на другие источники, а именно солнце, геотермальные, ветер и вода. Про ветрогенераторы мы уже писали, теперь пора писать про устройство солнечной батареи.

Впервые фотогальванический эффект наблюдал в 1839 году французский физик Антуан Анри Беккерель, однако первый прототип солнечной батареи сделал в 1883 году американский изобретатель Чарльз Фриттс. Устройство первой солнечной батареи представляло из себя полупроводник покрытый сверхтонким слоем золота. Эффективность батареи была около 1%.

В 1888 году Александр Столетов создал первый в мире фотоэлектрический элемент. А в 1905 году Альберт Эйнштейн в своей работе объяснил явление фотоэлектрического эффекта, за что был удостоен Нобелевской премии по физике в 1921 году. В 1946 году солнечная батарея современного вида была запатентована Расселом Олом (Russell Ohl).

Современные высокоэффективные солнечные батареи на кристаллическом кремнии были созданы в Лабораториях Белла (Bell Laboratories), инженерами Дэрил Чапин (Daryl Chapin), Кельвином Соулзером Фуллером (Calvin Souther Fuller) и Геральдом Пирсоном (Gerald Pearson) в 1954 году. С тех пор солнечная батарея начала свое победное шествие по миру.

Устройство солнечных батарей

Современные солнечные батареи делаются в основном на основе кремния. Существуют две технологии изготовления – монокристаллическая и поликристаллическая. Последняя более современна и используется для получения более дешевых солнечных батарей. Также существуют солнечные батареи созданные на основе теллурида кадмия, селенидов меди индия и галия, а также аморфного кремния.

Солнечная батарея (называемые также фотоэлектрические элементы) — это твердотельные электрические устройства, предназначенные для преобразования солнечной энергии в электрическую, посредством фотоэлектрического эффекта. Каждая солнечная батарея состоит из солнечных ячеек.

Сборки солнечных ячеек используются для создания модулей, для выработки электричества из солнечной энергии. Такие сборки монтируются вместе, для получения группы из солнечных модулей, которые в свою очередь устанавливаются на специальные поворотные устройства или слеллажи, ориентирующие группу солнечных модулей на солнце, которая также включает в себя другой электронный обвес. Такие сборки называются солнечными панелями.

Надо заметить, что в русском языке и все детали сборки вместе и по отдельности называют солнечными батареями. Это неверно, поскольку слово “батарея” подразумевает под собой аккумулирование и/или выделение энергии. По сути, батареи в солнечной панели тоже есть — это могут быть аккумуляторы, которые накапливают заряд, поступающий от солнечных сборок. Но солнечная сборка это скорее генератор.

Также следует сказать, что в английском языке присутствует упоминание как солнечного модуля, так и солнечной панели. Различие состоит в том, что солнечный модуль нельзя разобрать на солнечные ячейки, он представляет собой самостоятельное, спаянное и гидроизолированное устройство. В то время как солнечную панель можно разобрать на солнечные модули.

В данном цикле статей мы будем использовать более привычное словосочетание — солнечная батарея, имея ввиду именно неразборный солнечный модуль, собранный из солнечных ячеек.

Вообще видов фотогальванических ячеек много. Они необязательно используются для создания солнечных батарей. Они могут служить для обнаружения света в любых других системах, обнаруживая, например инфракрасное излучение. Также фотоэлектрические ячейки используются для измерения интенсивности светового потока.

Присутствует несколько обозначений фотоэффекта.

Фотовольтаический эффект (греч. φῶς (phōs) означающее свет и англ. “voltaic” по имени Вольты) — это возникновение электродвижущей силы под действием электромагнитного поля.

Фотогальванический эффект — возникновение электрического тока при освещении полупроводника или диэлектрика или возникновение электро-движущей силы на освещаемом образце при разомкнутой цепи.

В тоже время фотоэффект — это испускание электронов или любого электромагнитного излучения в веществах, будь то твердые или жидкие.

Для удобства мы будем употреблять термин фотогальванические элементы.

Применения солнечных батарей

Фотогальванические модули обычно заключены в своеобразный корпус. Сверху их покрывают стеклом, которое позволяет солнечному свету проникать до самих ячеек, в тоже время защищая их от внешних механических и химический воздействий. Сзади модули защищены пластиковой крышкой с креплениями.
Солнечные ячейки обычно соединены в модулях в серии, чтобы создавать достаточное напряжение, в этом случае они соединяются по последовательной схеме. Параллельное соединение ячеек дает больший ток, но оно проблематично из-за условий внешней среды и электрических эффектов, протекающих в панелях. Например затенение отдельных строк из ячеек (солнечный модуль имеет строчную структуру) может привести к обратным токам через затененные ячейки от освещенных товарищей. Это может привести к серьезному снижению эффективности и даже выходу ячеек из строя.

Строки из ячеек должны быть самостоятельными элементами, например четыре строки по десять вольт. Для предотвращения теневых эффектов используются специальные схемы распараллеливания и защиты строк.

Солнечные модули могут соединяться в панели последовательно или параллельно, для достижения необходимого соотношения напряжения и силы тока. Однако специалистами рекомендуется использовать специальные независимые системы распределения нагрузки – MPPT (maximum power point trackers).
Системы распределения помогают избежать фиксированной цепи, переключая модули в параллельный или последовательный режимы для компенсации затененных участков солнечной панели.

Собранная с солнечной панели энергия поступает к потребителям через инвенторы напряжения. В автономных системах, энергия запасается в батареях и используется по надобности.

Как работают солнечные батареи

Солнечная батарея работает следующим образом.

1. Фотоны ударяются о поверхность солнечной батареи и поглощаются её рабочим материалом, например кремнием.
2. Фотоны, сталкиваясь с атомами вещества выбивают из него его родные электроны. В результате чего возникает разность потенциалов. Свободные электроны начинают двигаться внутри вещества, чтобы погасить разность потенциалов. Возникает электрический ток. Так как солнечная батарея это полупроводник, электроны движутся только в одном направлении.
3. Получаемый ток солнечная батарея преобразует в постоянный и отдает его потребителю или аккумулятору.

Стоимость солнечных панелей (солнечных батарей) неуклонно снижается год от года. Это происходит благодаря разработке новых методов изготовления ячеей, изучению материалов и методов их обработки.
Начиная с середины 2010 года цена производимого солнечной батареей ватта электрической энергии упала до 1,2-1,5 долларов для кристаллических модулей.

Материалы и технологии

силикон и кремний

“Здесь интересно упомянуть, что кремний по английски — silicon, а силикон — silicone).”

Солнечные батареи делаются из кристаллического кремния.
Кристаллический кремний это самое популярное на сегодняшний день вещество для изготовления солнечных ячеек. Его также называют «кремний солнечного качества».  Этот вид кремния подразделяют на различные виды, определяемые методиками изготовления и размером кристаллов.

Монокристаллический кремний

Чаще всего изготовляется методом Чохральского или тигельным методом. Схематично он показан на рисунке.
Принципиально он не отличается от методов выращивания кристаллов соли или медного купороса.
В большом тигле расплавляется кремний. После чего в него опускается затравка, представляющая собой кремниевый стержень-затравку, вокруг которого и начинает нарастать новый кристалл. Затравка и тигель вращаются в противоположные стороны. В результате получается огромный круглый кристалл кремния, который нарезают на пластинки, из которых изготавливают ячейки солнечной батареи. Однако главным недостатком этого метода является большое количество обрезков, а также специфическая форма монокристаллических солнечных ячеек — квадрат с обрезанными углами.

Поликристаллический кремний

Поликристаллический кремний является более дешевым и более простым в производстве. В отличие от монокристаллического кремния, который являет собой единый кристалл с регулярной решеткой, поли-кремний это совокупность из массы различных кристаллов, образующих единый кусок. Отсюда появляется специфический блик, похожий на металлические хлопья, на поверхности солнечных батарей, сделанных из него.

Ленточный кремний

Это тип поликристаллического кремния. Он изготавливается путем наплавнения тонких слоев кремния друг на друга. Образует поликристаллическую структуру. Не требует последующей распиловки, поэтому еще более дешев в производстве. Однако он менее эффективен.